El Tubo de Venturi es un dispositivo que origina una pérdida de presión al pasar por él un fluido. En esencia, éste es una tubería corta recta, o garganta, entre dos tramos cónicos. La presión varía en la proximidad de la sección estrecha; así, al colocar un manómetro o instrumento registrador en la garganta se puede medir la caída de presión y calcular el caudal instantáneo, o bien, uniéndola a un depósito carburante, se puede introducir este combustible en la corriente principal.
Las dimensiones del Tubo de Venturi para medición de caudales, tal como las estableció Clemens Herschel, son por lo general las que indica la figura 1. La entrada es una tubería corta recta del mismo diámetro que la tubería a la cual va unida. El cono de entrada, que forma el ángulo a1, conduce por una curva suave a la garganta de diámetro d1. Un largo cono divergente, que tiene un ángulo a2, restaura la presión y hace expansionar el fluido al pleno diámetro de la tubería. El diámetro de la garganta varía desde un tercio a tres cuartos del diámetro de la tubería.

Las dimensiones del Tubo de Venturi para medición de caudales, tal como las estableció Clemens Herschel, son por lo general las que indica la figura 1. La entrada es una tubería corta recta del mismo diámetro que la tubería a la cual va unida. El cono de entrada, que forma el ángulo a1, conduce por una curva suave a la garganta de diámetro d1. Un largo cono divergente, que tiene un ángulo a2, restaura la presión y hace expansionar el fluido al pleno diámetro de la tubería. El diámetro de la garganta varía desde un tercio a tres cuartos del diámetro de la tubería.

La presión que precede al cono de entrada se transmite a través de múltiples aberturas a una abertura anular llamada anillo piezométrico. De modo análogo, la presión en la garganta se transmite a otro anillo piezométrico. Una sola línea de presión sale de cada anillo y se conecta con un manómetro o registrador. En algunos diseños los anillos piezométricos se sustituyen por sencillas uniones de presión que conducen a la tubería de entrada y a la garganta.
La principal ventaja del Vénturi estriba en que sólo pierde un 10 - 20% de la diferencia de presión entre la entrada y la garganta. Esto se consigue por el cono divergente que desacelera la corriente.
Es importante conocer la relación que existe entre los distintos diámetros que tiene el tubo, ya que dependiendo de los mismos es que se va a obtener la presión deseada a la entrada y a la salida del mismo para que pueda cumplir la función para la cual está construido.
Esta relación de diámetros y distancias es la base para realizar los cálculos para la construcción de un Tubo de Venturi y con los conocimientos del caudal que se desee pasar por él.
Deduciendo se puede decir que un Tubo de Venturi típico consta, como ya se dijo anteriormente, de una admisión cilíndrica, un cono convergente, una garganta y un cono divergente. La entrada convergente tiene un ángulo incluido de alrededor de 21º, y el cono divergente de 7 a 8º. La finalidad del cono divergente es reducir la pérdida global de presión en el medidor; su eliminación no tendrá efecto sobre el coeficiente de descarga. La presión se detecta a través de una serie de agujeros en la admisión y la garganta; estos agujeros conducen a una cámara angular, y las dos cámaras están conectadas a un sensor de diferencial de presión.
La tabla muestra los coeficientes de descarga para los Tubos Vénturi, según lo establece la American Society of Mechanical Engineers. Los coeficientes de descarga que se salgan de los límites tabulados deben determinarse por medio de calibraciones por separado.
Coeficientes ASME para tubos Venturi
Funcionamiento de un tubo de venturi
En el Tubo de Venturi el flujo desde la tubería principal en la sección 1 se hace acelerar a través de la sección angosta llamada garganta, donde disminuye la presión del fluido. Después se expande el flujo a través de la porción divergente al mismo diámetro que la tubería principal. En la pared de la tubería en la sección 1 y en la pared de la garganta, a la cual llamaremos sección 2, se encuentran ubicados ramificadores de presión. Estos ramificadores de presión se encuentran unidos a los dos lados de un manómetro diferencial de tal forma que la deflexión h es una indicación de la diferencia de presión p1 – p2. Por supuesto, pueden utilizarse otros tipos de medidores de presión diferencial.
La ecuación de la energía y la ecuación de continuidad pueden utilizarse para derivar la relación a través de la cual podemos calcular la velocidad del flujo. Utilizando las secciones 1 y 2 en la formula 2 como puntos de referencia, podemos escribir las siguientes ecuaciones:

Q = A1v1 = A2v2 2
Estas ecuaciones son válidas solamente para fluidos incomprensibles, en el caso de los líquidos. Para el flujo de gases, debemos dar especial atención a la variación del peso específico g con la presión. La reducción algebraica de las ecuaciones 1 y 2 es como sigue:

Pero



Se pueden llevar a cabo dos simplificaciones en este momento. Primero, la diferencia de elevación (z1-z2) es muy pequeña, aun cuando el medidor se encuentre instalado en forma vertical. Por lo tanto, se desprecia este termino. Segundo, el termino hl es la perdida de la energía del fluido conforme este corre de la sección 1 a la sección 2. El valor hl debe determinarse en forma experimental. Pero es más conveniente modificar la ecuación (3) eliminando h1 e introduciendo un coeficiente de descarga C:

La ecuación (4) puede utilizarse para calcular la velocidad de flujo en la garganta del medidor. Sin embargo, usualmente se desea calcular la velocidad de flujo del volumen.
Puesto que


El valor del coeficiente C depende del número de Reynolds del flujo y de la geometría real del medidor. La figura 2 muestra una curva típica de C versus número de Reynolds en la tubería principal.

La referencia 3 recomienda que C = 0.984 para un Tubo Vénturi fabricado o fundido con las siguientes condiciones:

(en la tubería principal)
(en la tubería principal) donde se define como el coeficiente del diámetro de la garganta y el diámetro de la sección de la tubería principal. Esto es

Para un Tubo Vénturi maquinado, se recomienda que C = 0.995 para las condiciones siguientes:

en la tubería principal)
La referencia 3, 5 y 9 proporcionan información extensa sobre la selección adecuada y la aplicación de los Tubos de Venturi.
La ecuación (14-5) se utiliza para la boquilla de flujo y para el orificio, así como también para el Tubo de Venturi.
Aplicaciones tecnológicas de un tubo de venturi
El Tubo Vénturi puede tener muchas aplicaciones entre las cuales se pueden mencionar:
En la Industria Automotriz: en el carburador del carro, el uso de éste se pude observar en lo que es la Alimentación de Combustible.
Los motores requieren aire y combustible para funcionar. Un litro de gasolina necesita aproximadamente 10.000 litros de aire para quemarse, y debe existir algún mecanismo dosificador que permita el ingreso de la mezcla al motor en la proporción correcta. A ese dosificador se le denomina carburador, y se basa en el principio de Vénturi: al variar el diámetro interior de una tubería, se aumenta la velocidad del paso de aire.

1. Entrada de aire.
2. Mariposa del choke.
3. Cuerpo del carburador.
4. Surtidor de combustible.
5. Venturi.
6. Mariposa de gases.
7. Surtidor de marcha mínima y punzón.
8. Chicler de alta.
9. Depósito o cuba.
10. Flotador.
11. Diafragma de inyección.
12. Base y punzón.
13. Entrada de combustible.
14. Emulsionador.
15. Inyector.
La carburación tiene por objeto preparar la mezcla de aire con gasolina pulverizada, en proporción tal que su inflamación, por la chispa que salta en las bujías, resulte de combustión tan rápida que sea casi instantánea. Dicha mezcla varía según las condiciones de temperatura del motor y las del terreno por el cual se transita. En el momento del arranque por las mañanas, o cuando se requiere la máxima potencia para adelantar a otro carro, se necesita una mezcla rica en gasolina, mientras que en la marcha normal es suficiente una mezcla pobre, que permita transitar cómodamente y economiza combustible. En ciudades a más de 2.500 metros sobre el nivel del mar la mezcla se enriquece para compensar la falta de oxígeno y evitar que los motores pierdan potencia. Tal procedimiento, si bien mejora la potencia del motor, eleva el consumo y contamina más el aire.
Como se puede observar, en el carburador el Tubo de Venturi cumple una función importantísima como lo es el de permitir el mezclado del aire con el combustible para que se de la combustión, sin lo cual el motor del carro no podría arrancar, de aquí que el principio de este tubo se utiliza como parte importante de la industria automotriz.
En conclusión se puede decir que el Efecto Vénturi en el carburador consiste en hacer pasar una corriente de aire a gran velocidad, provocada por el descenso del pistón por una cantidad de gasolina que esta alimentando por un cuba formándose una masa gaseosa. La riqueza de la gasolina depende del diámetro del surtidor.
El Carburador
La misión del carburador es la de mezclar el aire debidamente filtrado con la gasolina que procede del depósito, formando una mezcla con una proporción adecuada para que pueda quemarse con facilidad en el interior de los cilindros. El carburador debe de formar una mezcla gaseosa, homogénea y bien dosificada. El principio básico de un carburador consiste en hacer pasar aire con una velocidad determinada, produciéndose una depresión que asegura la aspiración por el efecto "VENTURI", una aplicación doméstica de este efecto la tenemos en los antiguos pulverizadores de insecticida. Podemos definir como carburador básico el explicado anteriormente.


En el interior del carburador la mezcla aire-gasolina se forma por el efecto llamado "VENTURI", que consiste en hacer pasar una corriente de aire a gran velocidad, provocada por el descenso del pistón, por una cantidad de gasolina que está alimentado por una cuba, formándose una masa gaseosa. La riqueza de gasolina depende del diámetro del surtidor.
la principal ventaja del mezclador progas, es que no restringe en absoluto la entrada de aire al motor.
por tal motivo el motor conserva las condiciones de funcionamiento originales.
solo con eso se puede lograr mayor potencia.
luego el mezclador a través de su diseño exclusivo y patentado genera la aspiración necesaria para mover el diafragma de tercer etapa del equipo de gas.
en todo el rango de rpm mostrando un incremento de la misma de acuerdo al flujo másico de aire en el interior del venturi.
con lo cual la mezcla aire gas es lineal consiguiendo el mejor desempeño del motor en todo el rango de rpm.
a travez de sus partes intercambiables puede ajustarse a modo especifico para cada modelo de motor producido en el mundo en relación a cada equipo de gas, y condiciones de funcionamiento tales como topografía, temperaturas ambiente, composición gaseosa y estado del conjunto motor y reductor de presión.
logrando asi un funcionamiento optimo.
porgas cuenta con un estock de 3900 modelos de mezcladores, cada uno con 9 posibles variaciones en si uno para cada motor.
